$20^{\text {th }}$ BALKAN MATHEMATICAL OLYMPIAD

2003

1. Is there a set of 4004 positive integers so that the sum of any 2003 of them be not divisible by 2003 ?
2. Let $A B C$ be a triangle with $A B \neq A C$, and let D be the point of intersection between the tangent at A to the circumcircle of $A B C$ and BC . Consider the points E, F which lie on the perpendiculars raised from B and C to $B C$, and on the perpendicular bisectors of $A B$ and $A C$, respectively. Prove that D, E and F are collinear.
3. Find all functions $f: \mathbb{Q} \longrightarrow \mathbb{R}$ that satisfy the conditions:
(a) $f(1)+1>0$.
(b) $f(x+y)-x f(y)-y f(x)=f(x) f(y)-x-y+x y$, for all $x, y \in \mathbb{Q}$.
(c) $f(x)=2 f(x+1)+x+2$, for every $x \in \mathbb{Q}$.
4. Let $A B C D$ be a rectangle of side lengths m, n made out of $m \times n$ unit squares. Assume that m and n are two odd and coprime positive integers. The points of intersection between the main diagonal $A C$ and the sides of the unit squares it encounters are $A_{1}, A_{2}, \ldots, A_{k}$ in this order $(k \geq 2)$, and $A_{1}=A$ and $A_{k}=C$. Prove that

$$
A_{1} A_{2}-A_{2} A_{3}+A_{3} A_{4}-\cdots+(-1)^{k} A_{k-1} A_{k}=\frac{\sqrt{m^{2}+n^{2}}}{m n}
$$

